Symmetric-Convex Functionals of Linear Growth

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating functions and companion symmetric linear functionals

In this contribution we analyze the generating functions for polynomials orthogonal with respect to a symmetric linear functional u, i.e., a linear application in the linear space of polynomials with complex coefficients such that u(x) = 0. In some cases we can deduce explicitly the expression for the generating function P(x,ω) = ∞ ∑

متن کامل

On the Minimization Problem of Sub-linear Convex Functionals

The study of the convergence to equilibrium of solutions to FokkerPlanck type equations with linear diffusion and super-linear drift leads in a natural way to a minimization problem for an energy functional (entropy) which relies on a sub-linear convex function. In many cases, conditions linked both to the non-linearity of the drift and to the space dimension allow the equilibrium to have a sin...

متن کامل

Order continuous linear functionals on non-locally convex Orlicz spaces

The space of all order continuous linear functionals on an Orlicz space L defined by an arbitrary (not necessarily convex) Orlicz function φ is described.

متن کامل

Almost multiplicative linear functionals and approximate spectrum

We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Elliptic and Parabolic Equations

سال: 2016

ISSN: 2296-9020,2296-9039

DOI: 10.1007/bf03377392